skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jeyakumar, Jeya Vikranth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Effective processing, interpretation, and management of sensor data have emerged as a critical component of cyber-physical systems. Traditionally, processing sensor data requires profound theoretical knowledge and proficiency in signal-processing tools. However, recent works show that Large Language Models (LLMs) have promising capabilities in processing sensory data, suggesting their potential as copilots for developing sensing systems. To explore this potential, we construct a comprehensive benchmark, SensorBench, to establish a quantifiable objective. The benchmark incorporates diverse real-world sensor datasets for various tasks. The results show that while LLMs exhibit considerable proficiency in simpler tasks, they face inherent challenges in processing compositional tasks with parameter selections compared to engineering experts. Additionally, we investigate four prompting strategies for sensor processing and show that self-verification can outperform all other baselines in 48% of tasks. Our study provides a comprehensive benchmark and prompting analysis for future developments, paving the way toward an LLM-based sensor processing copilot. 
    more » « less
    Free, publicly-accessible full text available February 26, 2026
  2. null (Ed.)
  3. Traditional machine learning approaches for recognizing modes of transportation rely heavily on hand-crafted feature extraction methods which require domain knowledge. So, we propose a hybrid deep learning model: Deep Convolutional Bidirectional-LSTM (DCBL) which combines convolutional and bidirectional LSTM layers and is trained directly on raw sensor data to predict the transportation modes. We compare our model to the traditional machine learning approaches of training Support Vector Machines and Multilayer Perceptron models on extracted features. In our experiments, DCBL performs better than the feature selection methods in terms of accuracy and simplifies the data processing pipeline. The models are trained on the Sussex-Huawei Locomotion-Transportation (SHL) dataset. The submission of our team, Vahan, to SHL recognition challenge uses an ensemble of DCBL models trained on raw data using the different combination of sensors and window sizes and achieved an F1-score of 0.96 on our test data. 
    more » « less